信号需要增益时,放大器是组件。对于电压反馈型和全差分放大器,反馈和增益电阻之比rf/rg决定增益。一定比率设定后,下一步是选择rf或rg的值。rf的选择可能影响放大器的稳定性。
放大器的内部输入电容可在数据手册规格表中找到,其与rf交互以形成传递函数中的一个极点。如果rf极大,此极点将影响稳定性。如果极点发生的频率远高于交越频率,则不会影响稳定性。不过,如果通过f = 1/(2πrfcin,amp)确定的极点位置出现在交越频率附近,相位裕量将减小,可能导致不稳定。
图1的示例显示小信号闭环增益与 ada4807-1电压反馈型放大器频率响应的实验室结果,采用同相增益为2的配置,反馈电阻为499 ?、1 k?和10 k?。数据手册建议rf值为499 。
图1.使用不同反馈电阻的实验室结果。vs = ±5 v,
vout = 40 mv p-p,rload = 1 k?,针对499 ?、1 k?和10 k?的rf值
小信号频率响应中的峰化程度表示不稳定性。rf从499 ?增加至1 k?可稍微增加峰化。这意味着rf为1 k?的放大器具有充足的相位裕量,且较稳定。rf为10 k?时则不同。高等级的峰化意味着不稳定性(振荡),因此不建议。
图2.使用ada4807 spice模型的模拟结果。
vs = ±5 v,g = 2,rload = 1 k?,针对499 ?、1 k?和10 k?的rf值。
在实验室中验证电路不是检验潜在不稳定性的强制步骤。图3显示使用spice模型的模拟结果,采用相同的rf值499 ?、1 k?和10 k?。结果与图1一致。图3显示了时域内的不稳定性。
图3.使用ada4807 spice模型的脉冲响应模拟结果。
vs = ±5 v,g = 2,rload = 1 k?,针对499 ?、1 k?和10 k?的rf值
通过在rf两端放置反馈电容给传递函数添加零点,可以去除图4所示的不稳定性。
图4.脉冲响应仿真结果, 使用3.3 pf反馈电容cf。
vs = ±5 v, g = 2, rf = 10 k? , rload = 1 k?。
rf的选择存在权衡,即功耗、带宽和稳定性。如果功耗很重要,且数据手册建议反馈值无法使用,或需要更高的rf值,可选择与rf并联放置反馈电容。此选择产生较低的带宽。
为电压反馈型和全差分放大器选择rf时,需要考虑系统要求。如果速度不重要,反馈电容有助于稳定较大的rf值。如果速度很重要,建议使用数据手册中推荐的rf值。忽略rf与稳定性、带宽和功率的关系可能妨碍系统,甚至阻碍系统实现完整性能。
『本文转载自网络,九游会j9的版权归原作者所有,如有侵权请联系删除』